

1 Optimizing Ammonia Emissions for PM_{2.5} Mitigation:

2 Environmental and Health Co-Benefits in Eastern China

Keqin Tang ¹, Haoran Zhang ², Ge Xu ¹, Fengyi Chang ¹, Yang Xu ¹, Ji Miao ³, Xian

- 5 Cui⁴, Jianbin Jin¹, Baojie Li¹, Ke Li¹, Hong Liao¹, Nan Li^{1,*}
- 8 Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and
- 9 Equipment Technology, School of Environmental Science and Engineering, Nanjing
- 10 University of Information Science & Technology, Nanjing, 210044, China
- 11 ² School of Atmospheric Sciences, Nanjing University, Nanjing, China
- 12 ³ Department of Colorectal Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital
- 13 of Medical School, Nanjing University, Nanjing, China
- ⁴ Rugao Hospital of Chinese Medicine, Nantong, China

* Correspondence to: Nan Li, <u>linan@nuist.edu.cn</u>

17

15

6

Abstract.

18

Ammonia (NH₃) is a key precursor of PM_{2.5}, contributing to the formation of 19 20 secondary inorganic aerosols and playing a crucial role in haze events. However, 21 current bottom-up emission inventories in China often underestimate NH3 emissions, particularly with significant uncertainties in urban areas. This study developed a "top-22 23 down" iterative algorithm that integrates the IASI satellite observations with the WRF-Chem model to optimize bottom-up NH₃ emissions, and further quantified the impacts 24 25 of source-specific emission reductions on PM_{2.5} pollution. The result reveals that the updated NH₃ emissions in Eastern China for 2016 amounted to 4.2 Tg·yr⁻¹, 27.3% 26 higher than prior estimations. The optimized NH₃ emissions peak in summer at 463.1 27 Gg·mon⁻¹, with agricultural sources accounting for 85%, while winter emissions drop 28 to 217 Gg·mon⁻¹ when the contribution from non-agricultural sources (e.g., industry, 29 vehicle) significantly increases. The optimized NH₃ emission significantly improved 30 the simulated results of NH₃ concentration, both in terms of magnitude (31%~42%) and 31 variations (17%~55%). Sensitivity simulations show that a 30%~60% reduction in NH₃ 32 emission led to decreases of 1.5~8.8 µg·m⁻³ in city-level PM_{2.5} concentrations and the 33 potential effect of reducing non-agricultural emissions is comparable with that from 34 agricultural sources. Furthermore, the NH₃ reduction positively impacts public health, 35 resulting in a 6.5%~10.3% decrease in premature deaths attributed to PM_{2.5} exposure. 36 These findings provide strong data support for air quality research and offer valuable 37 insights into the potential air quality and public health benefits of NH3 emission 38 39 reduction.

40 41

Keywords: NH₃ emission, PM_{2.5}, satellite retrieval, WRF-Chem, top-down

42

1 Introduction

In recent years, China has continued to face significant challenges associated with 44 PM_{2.5} pollution (Geng et al., 2024; Lei et al., 2022). This issue adversely affects 45 atmospheric environment via reducing visibility (Hu et al., 2021; Yang et al., 2022) and 46 deteriorating air quality (Lei et al., 2024; Song et al., 2025), impacts climate change by 47 altering radiation balance and cloud formation (Gao et al., 2023; Yang et al., 2021), and 48 poses substantial threats to human health (Du et al., 2024; Feng et al., 2016; Liu et al., 49 50 2025; Xiao et al., 2022; Zhu et al., 2025). Ammonia (NH₃), a key precursor of PM_{2.5}, neutralizes sulfuric acid (H₂SO₄) and nitric acid (HNO₃), leading to the formation of 51 secondary inorganic aerosols (SIA), which contributes 19.4%~55, 0% of the total PM_{2.5} 52 53 (Huang et al., 2014; Liu et al., 2022b; Wang et al., 2016; Wei et al., 2023; Zheng et al., 2015; Zhou et al., 2022). Reducing NH₃ emissions is a highly effective strategy for 54 mitigating of PM_{2.5} pollution (Bessagnet et al., 2014; Xu et al., 2022), particularly in 55 light of the successful control of sulfur dioxide (SO₂) and nitrogen dioxide (NO₂) in 56 57 China over the past decade (Li et al., 2023b; Wang et al., 2017; Zhang et al., 2019; 58 Zheng et al., 2018). The anthropogenic sources of NH₃ include agriculture, industry, power generation, 59 transportation and residential activities. Numerous studies have estimated NH₃ 60 emissions using a bottom-up approach, reporting emissions in China ranging from 9.7 61 Tg yr⁻¹ to 13.2 Tg yr⁻¹ (Chen et al., 2021; Huang et al., 2012; Kang et al., 2016; Li et 62 al., 2021; Ma, 2020). Among these sources, agricultural (AGR) sector is identified as 63 the dominant contributor nationwide, accounting for 75.0%~94.5% of total NH₃ 64 emissions (Guo et al., 2020; Ma, 2020; Zhou et al., 2021). Additionally, some studies 65 have highlighted that in densely populated regions, NH3 from non-agricultural (non-66 AGR) activities, such as industrial production/slip, vehicles, and waste disposal, 67 contributing up to 50% of regional emissions and should not be overlooked, (Chang et 68 al., 2015, 2016; Chen et al., 2022; Feng et al., 2022; Pan et al., 2016, 2018b; Pu et al., 69 70 2020; Song et al., 2021; Sun et al., 2017; Van Damme et al., 2018; Wu et al., 2020). However, despite considerable progress, bottom-up estimates still exhibit considerable 71

lack of accurate and timely statistical data. 73 The uncertainty in the emission estimations further contributes to significant 74 75 discrepancies (1%~50%) in the assessing impacts of NH₃ reduction on PM_{2.5} level (Guo et al., 2018, 2024; Li et al., 2024; Liu et al., 2019, 2021, 2023; Pan et al., 2024; Zhang 76 77 et al., 2022). Cheng et al (2021) employed WRF-Chem simulations to demonstrate a 24.6% reduction in PM_{2.5} from the removal of AGR NH₃ emissions. Concurrently, Ti 78 et al (2022) determined that a 74% decrease in AGR NH₃ resulted in a 34.9% reduction 79 in PM_{2.5} in China. 80 To enhance the accuracy and reliability of bottom-up emission estimations, air 81 quality monitoring satellites are increasingly regarded as valuable tools from a top-82 down perspective, offering advantages in both magnitude and timeliness (Chen et al., 83 2021; Guo et al., 2020; Jin et al., 2023; Qi et al., 2017; Zhou et al., 2021, 2017). Many 84 studies have estimated optimized NH₃ emissions in China to be between 10.0 Tg yr⁻¹ 85 and 18.9 Tg yr-1 by coupling chemical transport model, mass balance approach, or 86 machine learning techniques with various NH3 measurements (satellite retrieval or 87 88 ground monitoring). Some studies have also improved the description of the spatial and monthly variations of NH₃ emissions (Kong et al., 2019; Liu et al., 2022a; Paulot et al., 89 90 2014; Zhang et al., 2018, 2017). However, most top-down studies lack further 91 investigation into the source-specific allocation of emissions based on the optimal total 92 emission assessment (Fu et al., 2015; Sun et al., 2017; Zhang et al., 2024). Hence, a more comprehensive understanding of NH₃ emissions from diverse sources across 93 94 varying seasons is needed to improve existing top-down inventories and enhance the scientific accuracy of NH₃ emission reduction assessments. 95 In this study, we used satellite and surface NH₃ measurements alongside the 96 regional chemical model WRF-Chem to constrain bottom-up and source-specific NH₃ 97 emission estimates over Eastern China, with the aim of more accurately assessing the 98 impacts of NH₃ emission reductions from different sources on PM_{2.5} concentrations. 99 The paper is structured as follows: Section 2 describes the detailed methodology, 100 101 Section 3 presents the simulated NH₃ with prior emission, Section 4 provides a top-

discrepancies and are often outdated, with a time lag of 1~2 years, mainly due to the

down estimate of NH₃ emission, and Section 5 demonstrates the direct correlation between NH₃ emission reductions and PM_{2.5} concentration levels, as well as the resulting health benefits. Our work differs from previous studies in that we constrain NH₃ emissions by sector, season, and region, and further assess the potential mitigation effects of NH₃ based on the optimized NH₃ inventory.

107

108

109

110

111

112

113

114

115

116

117

118119

120121

122

123

124

125

126127

128

129 130

2 Methodology

2.1 Air Quality Model

In this study, the chemical transport model WRF-Chem v3.9.1 (Grell et al. 2005) was utilized to constrain the NH3 emissions and to assess the impact of reduced NH3 emission on PM_{2.5} concentrations. Spatially, two nested domains were configured with horizontal resolutions of $54 \times 54 \text{ km}^2$ and $18 \times 18 \text{ km}^2$. The outer domain covered entire China and the inner domain focused Eastern China, characterized by intensive anthropogenic activities and elevated pollution levels(Pendergrass et al., 2025; Peng et al., 2025), including the Beijing-Tianjin-Hebei (BTH) region, Henan, Shandong, and the Yangtze River Delta (YRD) region (Figure 1). The initial and boundary conditions of meteorological parameters were derived from FNL reanalysis datasets provided by the National Centers for Environmental Prediction (NCEP) in the United States (https://rda.ucar.edu/datasets/). The initial and boundary conditions of chemical species were obtained from the global chemical model MOZART (Emmons et al. 2010). We conducted simulations for the entire year of 2016. The physical and chemical parameterization for describing sub-grid processes, such as radiation, microphysics, and gas-phase reaction schemes, are listed in Table S1. We adopted anthropogenic emission estimates from the Multi-resolution Emission Inventory for China (MEIC) developed by Tsinghua University (Li et al., 2017; Zheng et al., 2018). Moreover, biogenic emissions and biomass burning emissions were calculated online using the Model of Emissions of Gases and Aerosols from Nature (MEGAN, v2.0.4) (Guenther, 2006) and the Fire Inventory from NCAR (FINN)

(Wiedinmyer et al., 2011), respectively.

2.2 Satellite retrievals and surface measurements

We obtained the total NH₃ column density data from the IASI dataset (https://iasi.aeris-data.fr/nh3/, last accessed on May 13, 2025) to represent the observed NH₃ level. The inversion algorithm used in IASI is the ANNI-NH₃ algorithm, which is based on the HRI inversion framework developed by Damme et al (2017) without averaging kernels. The IASI NH₃ products feature daily temporal resolution and fine spatial resolution (12 × 12 km²). In this study, we pre-processed the data of IASI products into monthly averages to achieve high spatial coverage and interpolated them to the grid cells of the WRF-Chem model. Furthermore, an artificial neural network is employed to enhance the accuracy and confidence of the IASI product. We selected the products with less than 75% uncertainty and less than 10% cloud coverage.

In addition, surface NH₃ observation from in-situ measurements reported by Pan et al. (2018a) were employed for simulation evaluation. These ground-based measurements summarized the seasonal mean concentration of NH₃ at 53 sites in China from September 2015 to August 2016.

Additionally, surface meteorological data, including temperature, relative humidity and wind speed was obtained from China Meteorological Administration website (https://data.cma.cn/) to assess the meteorological conditions in study region. Air pollutant concentrations associated with NH₃ (such as PM_{2.5}, NO₂ and SO₂) from public website of the Ministry of Ecology and Environment (MEE) (https://air.cnemc.cn:18007/) of China were also used for evaluation. The complete information of the in-situ measurements used in this study is available in Tables S2~S4.

3 NH₃ simulations with bottom-up emissions

We applied the bottom-up NH₃ emission from MEIC (Li et al., 2017; Zheng et al., 2018) to drive the prior simulation. As shown in Figure 2, the prior NH₃ emission amounted to 3.3 Tg yr⁻¹ in Eastern China, among which 93.0% emission is from AGR sources and the other 7.0% emission is from non-AGR sources. The largest emissions

are recorded in July at 366.8 Gg mon ⁻¹, while the smallest emissions are recorded in January at 206.5 Gg mon ⁻¹ (Figure S1).

We compared the model results from prior run (for the entire year of 2016) with the satellite retrievals and the in-situ NH₃ measurements. To quantitatively describe model performance, we adopted three following statistical metrics, i.e., root mean squared error (RMSE, $0 \sim +\infty$), index of agreement (IOA, $0 \sim 1$) and mean fractional bias (MFB, $-2 \sim 2$)(Huang et al., 2021). They were calculated based on Eq. $1\sim3$, where subscripts s, o and N represent simulation, observation, and the number of samples, respectively.

169
$$RMSE = \sqrt{\frac{\sum_{i=1}^{N} (C_{m} - C_{o})^{2}}{N}} \quad (1)$$
170
$$IOA = 1 - \frac{\sum_{i=1}^{N} (C_{s} - C_{o})^{2}}{\sum_{i=1}^{N} (|C_{s} - \overline{C_{o}}| + |C_{o} - \overline{C_{o}}|)^{2}} \quad (2)$$
171
$$MFB = \frac{1}{N} \sum_{i=1}^{N} \frac{(C_{o} - C_{m})}{(\frac{C_{o} + C_{m}}{2})} \quad (3)$$

The annual NH₃ total column density is simulated to be 17.4×10¹⁵ molec cm⁻² averaged for Eastern China, which represents a 61% underestimated compared to satellite retrievals (29.0×10¹⁵ molec cm⁻²). The seasonal simulations of NH₃ results also exhibit significant discrepancies with observations, especially in the spring. Specifically, the simulated NH₃ total column in Eastern China is only 13.2×10¹⁵ molec cm⁻² in spring, with concentration in 67.5% of the region being underestimated by more than 50%. These discrepancies are also evident in Figure 3. Most simulated NH₃ total columns have errors of over 30% when compared to satellite columns, and the RMSE of 10.

Spatially, satellite-based observations reveal that the high-value areas of NH₃ column are located at the junction of Henan, Shandong, and Hebei provinces. In contrast, the prior modeling results show that NH₃ column densities are more concentrated in Henan. This indicates a clear discrepancy in the spatial distribution of NH₃ column density between the prior simulations and the observations.

Additionally, the comparison between the simulated and observed surface NH_3 concentrations also indicates a notable underestimation. The mean simulated surface NH_3 concentration over the study region is 6.3 μg m⁻³, which is only half of the

observation value, with an IOA of 0.56 and an MFB of -61% (Figure S2).

189 190

191

192

193

194

195 196

197

198 199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

4 Top-down estimates of NH₃ emissions

4.1 Iterative algorithm for NH₃ emission estimation

We utilized an iterative algorithm (Figure 4) to update the prior NH₃ emissions from different sources constrained by IASI observations. This process was carried out in January, April, July, and October in 2016 to represent four seasons. We compared the prior simulation results with satellite retrievals and discussed the performance of prior emissions in detail in Section 3. Furthermore, we conducted a series of sensitivity simulations to obtain prior simulated NH₃ from disparate sources and which were then fed into the iterative algorithm along with satellite data for calculation. In each iterative calculation, the monthly average satellite-derived NH₃ column concentration in singlepixel served as the target, and multiple linear regression (MLR) was applied to calculate the corresponding regression factors for AGR and non-AGR emissions (Figure S3). Here, we take the i iteration in k month, j region as an example to calculate the regression factors, and the formula is as follows: $\mathsf{TA}_{\mathsf{satellite}}{}^{j,k} - \mathsf{SA}_{\mathsf{transport}}{}^{j,k} = \alpha_i^{j,k} * \mathsf{SA}_{\mathsf{agriculture}}{}^{j,k}{}^{j,k} + \beta_i^{j,k} * \mathsf{SA}_{\mathsf{non-agriculture}}{}^{j,k}{}^{j,k} \tag{4}$ where, TA_{satellite} ^{j,k} denotes the total NH₃ column density retrieved from the IASI satellite data, and $SA_{transport}^{j,k}$, $SA_{agriculture}^{j,k}_{i-1}$ and $SA_{non-agriculture}^{j,k}_{i-1}$ stand for the total column concentration of NH₃ contributed by AGR emissions, non-AGR emissions, and outside transportation, respectively. We clarified this NH₃ concentrations contributed by different pathways by conducting sensitivity tests with the WRF-Chem model (Table 2). In each cycle, we control AGR emissions, non-AGR emissions and regional external emissions to obtain the corresponding NH₃ column concentration. The $SA_{agriculture}_{i-1}^{j,k}$, $SA_{non-agriculture}_{i-1}^{j,k}$, and $SA_{transport}^{j,k}$ are calculated by subtracting Ablank from Aagr, Anon-agr, and Atransport, respectively. Further, the multiple linear regression provided regression coefficients $\alpha_i^{j,k}$ and $\beta_i^{j,k}$, respectively correspond to AGR and non-AGR NH₃ emissions in month j from area

k, within the i iteration. As the regression equation is obtained in a mathematical statistical sense, we need to correct for this regression coefficient. The biases between the model simulation and the satellite retrievals were calculated as $D_i^{j,k}$. We considered the residuals of the multiple linear regression, the goodness of fit and $D_i^{j,k}$, and obtained the judgment coefficient $K_i^{j,k}$. The regression coefficients with excessive residuals are removed to increase credibility. Concurrently, the goodness of fit of the regression is calculated. In the event that the goodness of fit falls between 0.3 and 1, the regression coefficient is deemed to be acceptable. Should the regression coefficient fail to meet the requisite requirements, it is deemed invalid. We further use it to make a trade-off for the regression coefficient. The adjustment factors a and b for AGR and non-AGR sources were finally obtained, respectively. Finally, the new simulated NH₃ values were obtained through WRF-Chem, and the process was iteratively repeated, until the error is less than 30%. It is worth noting that we conducted detailed temporal (month) and spatial divisions (grid) in the MLR analysis and calculated them separately to better capture the seasonal and spatial characteristics of emissions.

4.2 posterior NH₃ emission estimates

The top-down constrained results (posterior) indicate that the annual NH₃ emission in Eastern China has been updated to 4.2 Tg yr⁻¹, representing a 27.3% increase compared to the prior value (Figure 2). The posterior non-AGR emissions show a significant increase, from 0.2 Tg yr⁻¹ to 1.1 Tg yr⁻¹, particularly in urban regions along the Yangtze River, as well as in southern BTH, central Shandong and northern Henan. The posterior AGR emissions increased slightly, from 3.0 Tg yr⁻¹ to 3.1 Tg yr⁻¹, but the high-emission regions shift from Henan to Shandong, Jiangsu and northern Anhui (Ren et al., 2023).

In terms of seasonality, as shown in Figure 5, the posterior NH₃ emissions are highest in summer, with a total of 463.1 Gg mon⁻¹, followed by spring (442.4 Gg mon⁻¹).

246

247

248

249

250

251

252

253

254

255

256257

258

259

260261

262

263

264

265

266267

268

269

270

271272

273

274

and lowest in winter (217.4 Gg mon⁻¹). At the specific-source scale, AGR NH₃ emissions show similar seasonal patterns with the total NH₃ emissions, higher in summer and spring. In contrast, non-AGR NH₃ are highest in winter and fall because fossil fuel combustion-related emissions are high in cold season, while the lowest emissions occur in summer. In addition, the ratio of AGR and non-AGR NH₃ emissions significantly varies across different regions. The percentages of non-AGR NH₃ emissions range from 18.8% to 35.8%, which is higher than the proportion in the prior inventory (Figure 5a). This shift can be attributed to the increased relative importance of fossil fuel combustion-related emissions under high PM2.5 loadings, which in turn promote higher NH₃ emissions from these sources (Pan et al., 2018b). Meanwhile, AGR NH₃ emissions are relatively inactive in winter due to unfavorable meteorological conditions. Similar high fractions of non-AGR emissions have also been reported in other studies (Feng et al., 2022; He et al., 2021). Table 1 compares the results with related studies focused on NH₃ emission estimates. Overall, the estimated NH3 emission in this study is comparable to the estimates of the other studies based on "top-down" and "bottom-up" approaches. In similar years and regions, the discrepancy between the estimates of this study and other studies ranges from 1.0% to 19.6%. Furthermore, the seasonal distribution of NH₃ emissions in this study aligns with the findings of some prior research (Kong et al., 2019; Liu et al., 2024; Zhang et al., 2018; Zhao et al., 2020). In terms of sectors, other studies have indicated that the proportion of NH₃ emissions from AGR sources is more than 80%, using the bottom-up approach (Chen et al., 2021; Huang et al., 2012; Kang et al., 2016; Li et al., 2021). This study, however, reveals a proportion of 74.4% for AGR emissions, thereby emphasizing the contribution of non-AGR emissions. By employing an iterative algorithm for the estimation of NH₃ emissions from diverse sources, this study facilitates a more comprehensive capture of neglected non-AGR sources. Concurrently, the eastern developed industry is expected to exhibit an increase in the proportion of NH₃ emissions from non-AGR sources when compared to the national average. It is important to note that discrepancies in results between studies

1), largely due to fertilizer application (Li et al., 2021; Lu et al., 2025; Ren et al., 2025),

may be attributable to methodological differences (e.g. the sensitivity of the top-down approach to target data selection) and uncertainty in the underlying data. For instance, the NH₃ emission estimated by Paulot et al. (2014) using the mass balance method based on NH₄⁺ wet deposition fluxes is significantly lower than that in other studies, which may be attributed to its fewer observation sites in China. These discrepancies underscore the necessity to enhance the reliability of NH₃ observations in forthcoming studies, with the objective of enhancing the precision of the estimates.

4.3 Simulated NH₃ with top-down emissions

Figure 6 compares the spatial distributions of NH₃ total column density from satellite retrievals, prior simulations and posterior simulations. The annual mean simulated NH₃ total column density from posterior emissions is 23.7×10¹⁵ molec cm⁻², 35.9% higher than the prior results and closer to the observed 29.0×10¹⁵ molec cm⁻². IOA and MFB between the posterior simulations versus measurements are 0.9 and -30.0%. Figure 3 also shows the improvement in model performance. More than 80% of the points fall in the range where the simulation-to-observation ratio is between 0.7 and 1.3 and the RMSE is less than 10. A more consistent seasonal distribution can be obtained in a posterior simulation, with associated temporal MFB of NH₃ column density on the seasonal scale is reduced from -53% (prior) to -24% (posterior). Simultaneously, the spatial distribution pattern of posterior simulation is more identical to the characteristics revealed by satellite-based observations (Figure 6). The spatial MFB is also decreased from -52% (prior) to -20% (posterior), with an increase in spatial correlation coefficient from 0.79 to 0.92. The improvement is especially notable in the BTH region, where the simulated NH₃ column densities are doubled.

A similar improvement is also witnessed in the modeling of the surface NH₃ concentrations. The utilization of posterior emissions effectively reduces the bias of annual average NH₃ surface concentration by 42%. The MFBs of surface NH₃ simulation of seasons decrease from -79.0%~-37.0% to -47.0%~12.0% and the IOAs increase from 0.49~0.67 to 0.56~0.72. As illustrated in Figure S2, the posterior simulations successfully capture the spatial and seasonal characteristics against the

surface measurements. Nevertheless, the mean annual simulated surface NH_3 concentration still exhibits an underestimation (MFB = -19.0%). The obvious underestimation can be found in Yuncheng and Cangzhou, BTH (Table S2), which is further attributed to the impacts of local land use types categorized as farmlands and suburban (Pan et al., 2018a).

Furthermore, improving the NH₃ simulation results in the other simulated air pollutants being closer to observed levels (Table 3). It was found that posterior NH₃ emissions effectively bridge the gap between simulated and observed PM_{2.5}. The average PM_{2.5} concentration increased from 65.7 μg m⁻³ to 67.3 μg m⁻³, which is closer to the observed value of 67.1 μg m⁻³. Additionally, posterior SO₂ levels decreased by 17.1% in cities, from 8.2 ppbv to 6.8 ppbv, closer to observed 6.5 ppbv. The successful capture of air pollutants highlights a significant improvement in the NH₃ emission inventory for eastern China. The evaluation of routine air pollutants in each city is detailed in Figures S4~S6. The statistics of evaluation metrics for each city's meteorological simulation can also be found in Table S5.

5 PM_{2.5} and its health burden response to NH₃ reduction

To investigate the response of PM_{2.5} to various NH₃ emission reduction scenarios, we conducted sensitivity tests as outlined in Table S6. We formulated emission reduction scenarios of 30%~60% for January and July of 2016, considering the severe particulate pollution in winter and the higher NH₃ concentrations in summer. Emission reductions from both the AGR and non-AGR sectors were considered separately.

Figure 7 illustrates that reducing NH₃ emissions by 30%~60% can decrease the seasonal PM_{2.5} concentration by $1.5\sim5.7~\mu g~m^{-3}$ averaged for Eastern China in winter, mainly due to the reduction in secondary inorganic aerosols (SIA). Specifically, nitrate, ammonium and sulfate are reduced by $0.9\sim3.3~\mu g~m^{-3}$, $0.4\sim1.3~\mu g~m^{-3}$ and $0.3\sim1.0~\mu g~m^{-3}$ respectively. It is worth noting that the reduction in sulfate is smaller than that in nitrate because NH₃ preferentially reacts with sulfuric acid during aerosol formation (Figure S7). When ambient NH₃ concentrations are limited, nitrate concentrations decrease more significantly than sulfate concentrations. In summer, although aerosol

pollution is relatively lower, NH₃ emissions and atmospheric reactivity are higher. Consequently, reducing emissions by the same percentage results in a decrease in PM_{2.5}

337 concentration by 5.5~8.8 μg m⁻³.

In terms of special sources, reducing non-AGR NH₃ emissions is just as crucial as reducing AGR NH₃ emissions in mitigating PM_{2.5}. A 30% to 60% reduction in non-AGR NH₃ emissions during winter can lead to a decrease in PM_{2.5} by 0.9~1.5 μg m⁻³, which is comparable to the effect of reducing AGR NH₃ emissions (0.9~2.0 μg m⁻³). It should be noted that the reduction in PM_{2.5} resulting from both AGR and non-AGR NH₃ emissions is not proportional to the emission reduction across all sectors. This is due to the non-linear relationship between NH₃ emissions and PM_{2.5} concentrations.

This study utilized the integrated exposure–response (IER) model to estimate premature mortality resulting from PM_{2.5} exposure. Detailed methods and data can be found in our previous work (Li et al., 2023a). In the base case, PM_{2.5} exposure exhibits a significant impact on premature mortality, leading to 698.4 thousand fatalities in the study region. Specifically, premature deaths attributable to ischemic heart disease (IHD), stroke, lung cancer (LC), and chronic obstructive pulmonary disease (COPD) are 202.3, 347.9, 61.5, and 86.7 thousand, respectively. In other scenarios, the overall premature mortality burden decreases by 45.6~72.0 thousand instances (6.5%~10.3%) in Eastern China. Notably, the decline in premature deaths, especially those related to stroke, plays a significant role in the overall reduction.

6 Conclusions

Accurate NH₃ emission inventory is essential for developing effective air quality improvement policies. Numerous studies have demonstrated that the current bottom-up NH₃ emission inventories in China often underestimate the total NH₃ emissions, with significant uncertainties in the estimation of emissions from various sources. In this study, we used IASI satellite products and an iterative algorithm with the WRF-Chem model to optimize the bottom-up NH₃ emission inventory for Eastern China and further

363 assessed the impacts of NH₃ emission reductions from different sources on PM_{2.5} concentrations 364 The results indicate that the NH₃ emission in Eastern China for 2016 amounted to 365 4.2 Tg. The highest emissions occurred in summer (463.1 Gg mon⁻¹), with AGR sources 366 contributing 86.5% and non-AGR sources contributing 13.5%. In contrast, emissions 367 were lowest in winter (217.4 Gg mon⁻¹), and the proportion of emissions from non-368 AGR sources were higher than that from AGR sources. Spatially, the region with the 369 highest NH₃ emissions was located at the intersection of Henan, Hebei, and Shandong 370 provinces. The optimization of the NH₃ inventory further improved the simulation 371 underestimation of the NH₃ total column (MFB from -61% to -30%) and surface 372 concentration (MFB from -61% to -19%). It also indirectly improved the simulation of 373 other air pollutants, such as PM_{2.5}, NO₂ and SO₂. 374 375 Based on the posterior emission inventory, we conducted a series of sensitivity 376 simulations to investigate the response of PM_{2.5} concentrations to NH₃ emission reductions. A 30%~60% reduction in NH₃ emissions resulted in a 1.5~8.8 µg m⁻³ 377 decrease in PM_{2.5} concentrations. In terms of sectoral contributions, reductions in AGR 378 379 emissions led to a decrease in PM_{2.5} ranging from 0.9 µg m⁻³ to 7.4 µg m⁻³, while the response to reductions in non-AGR NH₃ emissions ranged from 0.9 µg m⁻³ to 5.3 µg m⁻³ 380 381 ³. Furthermore, the reduction in NH₃ emissions had a beneficial impact on public health, with a 6.5%~10.3% decrease in premature deaths attributed to PM_{2.5} exposure. 382 This study obtained a high-resolution NH₃ emission inventory for Eastern China 383 and highlights the significant role of non-AGR NH₃ emission reductions in further 384 385 decreasing PM_{2.5} levels. The findings provide robust data support for air quality research and offer scientific insights for exploring the potential air quality and public 386 health benefits of NH₃ emission reduction. 387 388 Conflicts of Interest: The authors declare that the research was conducted in the 389 absence of any commercial or financial relationships that could be construed as a 390 391 potential conflict of interest.

393 Author Contributions: Data curation, model simulation, visualization, and writingoriginal draft preparation, KQT, HRZ, GX, FYC, JM, XC and YX; Supervision, 394 395 funding acquisition, writing-review and editing, NL, HL, JBJ, BJL and KL. All authors 396 have read and agreed to the published version of the manuscript. 397 Funding: This work was supported by the National Key Research and Development 398 Program of China (2022YFC3701005), the special found of State Environmental 399 400 Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex (SEPAir-2024080216). 401 402 Acknowledgements: The numerical calculations in this paper have been done on the 403 supercomputing system in the Supercomputing Center of Nanjing University of 404 405 Information Science & Technology. 406 407 Reference Bai L, Lu X, Yin S, Zhang H, Ma S, Wang C, et al. 2020. A recent emission inventory 408 409 of multiple air pollutant, pm2.5 chemical species and its spatial-temporal characteristics in central china. Journal of Cleaner Production 269:122114. 410 Bessagnet, B., Beauchamp, M., Guerreiro, C., de Leeuw, F., Tsyro, S., Colette, A., 411 Meleux, F., Rouïl, L., Ruyssenaars, P., Sauter, F., Velders, G. J. M., Foltescu, V. L., 412 413 and van Aardenne, J.: Can further mitigation of ammonia emissions reduce exceedances of particulate matter air quality standards?, Environmental Science 414 415 & Policy, 44, 149–163, https://doi.org/10.1016/j.envsci.2014.07.011, 2014. Chang, Y., Deng, C., Dore, A. J., and Zhuang, G.: Human Excreta as a Stable and 416 417 Important Source of Atmospheric Ammonia in the Megacity of Shanghai, PLoS One, 10, e0144661, https://doi.org/10.1371/journal.pone.0144661, 2015. 418 Chang, Y., Zou, Z., Deng, C., Huang, K., Collett, J. L., Lin, J., and Zhuang, G.: The 419 420 importance of vehicle emissions as a source of atmospheric ammonia in the 421 megacity of Shanghai, Atmospheric Chemistry and Physics, 16, 3577-3594, 422 https://doi.org/10.5194/acp-16-3577-2016, 2016. Chen, Y., Shen, H., Kaiser, J., Hu, Y., Capps, S. L., Zhao, S., Hakami, A., Shih, J.-S., 423

- Pavur, G. K., Turner, M. D., Henze, D. K., Resler, J., Nenes, A., Napelenok, S. L.,
- Bash, J. O., Fahey, K. M., Carmichael, G. R., Chai, T., Clarisse, L., Coheur, P.-F.,
- 426 Van Damme, M., and Russell, A. G.: High-resolution hybrid inversion of IASI
- 427 ammonia columns to constrain US ammonia emissions using the CMAQ adjoint
- 428 model, Atmospheric Chemistry and Physics, 21, 2067–2082,
- 429 https://doi.org/10.5194/acp-21-2067-2021, 2021.
- 430 Chen, Y., Zhang, Q., Cai, X., Zhang, H., Lin, H., Zheng, C., Guo, Z., Hu, S., Chen, L.,
- Tao, S., Liu, M., and Wang, X.: Rapid Increase in China's Industrial Ammonia
- Emissions: Evidence from Unit-Based Mapping, Environ Sci Technol,
- 433 https://doi.org/10.1021/acs.est.1c08369, 2022.
- 434 Cheng, L., Ye, Z., Cheng, S., and Guo, X.: Agricultural ammonia emissions and its
- impact on PM2.5 concentrations in the Beijing-Tianjin-Hebei region from 2000 to
- 436 2018, Environ Pollut, 291, 118162, https://doi.org/10.1016/j.envpol.2021.118162,
- 437 2021.
- 438 Du, P., Du, H., Zhang, W., Lu, K., Zhang, C., Ban, J., Wang, Y., Liu, T., Hu, J., and Li,
- 439 T.: Unequal Health Risks and Attributable Mortality Burden of Source-Specific
- 440 PM_{2.5} in China, Environ. Sci. Technol., 58, 10897–10909,
- 441 https://doi.org/10.1021/acs.est.3c08789, 2024.
- 442 Feng, S., Gao, D., Liao, F., Zhou, F., and Wang, X.: The health effects of ambient PM2.5
- and potential mechanisms, Ecotoxicology and Environmental Safety, 128, 67–74,
- https://doi.org/10.1016/j.ecoenv.2016.01.030, 2016.
- 445 Feng, S., Xu, W., Cheng, M., Ma, Y., Wu, L., Kang, J., Wang, K., Tang, A., Collett, J.
- L., Fang, Y., Goulding, K., Liu, X., and Zhang, F.: Overlooked Nonagricultural
- 447 and Wintertime Agricultural NH3 Emissions in Quzhou County, North China Plain:
- 448 Evidence from 15N-Stable Isotopes, Environmental Science & Technology Letters,
- 9, 127–133, https://doi.org/10.1021/acs.estlett.1c00935, 2022.
- 450 Fu, X., Wang, S. X., Ran, L. M., Pleim, J. E., Cooter, E., Bash, J. O., Benson, V., and
- Hao, J. M.: Estimating NH<sub>3</sub> emissions from agricultural
- 452 fertilizer application in China using the bi-directional CMAQ model coupled to an
- agro-ecosystem model, Atmos. Chem. Phys., 15, 6637-6649,
- 454 https://doi.org/10.5194/acp-15-6637-2015, 2015.
- 455 Gao, D., Zhao, B., Wang, S., Wang, Y., Gaudet, B., Zhu, Y., Wang, X., Shen, J., Li, S.,
- 456 He, Y., Yin, D., and Dong, Z.: Increased importance of aerosol-cloud interactions
- for surface PM_{2.5} pollution relative to aerosol–radiation interactions in China with
- the anthropogenic emission reductions, Atmos. Chem. Phys., 23, 14359–14373,
- 459 https://doi.org/10.5194/acp-23-14359-2023, 2023.
- 460 Geng, G., Liu, Y., Liu, Y., Liu, S., Cheng, J., Yan, L., Wu, N., Hu, H., Tong, D., Zheng,
- 461 B., Yin, Z., He, K., and Zhang, Q.: Efficacy of China's clean air actions to tackle

- 462 PM2.5 pollution between 2013 and 2020, Nat. Geosci., 17, 987–994,
- 463 https://doi.org/10.1038/s41561-024-01540-z, 2024.
- Guo, H., Otjes, R., Schlag, P., Kiendler-Scharr, A., Nenes, A., and Weber, R. J.:
- 465 Effectiveness of ammonia reduction on control of fine particle nitrate,
- 466 Atmospheric Chemistry and Physics, 18, 12241–12256,
- 467 https://doi.org/10.5194/acp-18-12241-2018, 2018.
- 468 Guo, X., Ye, Z., Chen, D., Wu, H., Shen, Y., Liu, J., and Cheng, S.: Prediction and
- 469 mitigation potential of anthropogenic ammonia emissions within the Beijing-
- 470 Tianjin-Hebei region, China, Environ Pollut, 259, 113863,
- 471 https://doi.org/10.1016/j.envpol.2019.113863, 2020.
- Guo, Y., Zhang, L., Winiwarter, W., Van Grinsven, H. J. M., Wang, X., Li, K., Pan, D.,
- Liu, Z., and Gu, B.: Ambitious nitrogen abatement is required to mitigate future
- global PM2.5 air pollution toward the World Health Organization targets, One
- Earth, 7, 1600–1613, https://doi.org/10.1016/j.oneear.2024.08.007, 2024.
- 476 Hu, S., Zhao, G., Tan, T., Li, C., Zong, T., Xu, N., Zhu, W., and Hu, M.: Current
- 477 challenges of improving visibility due to increasing nitrate fraction in PM2.5
- during the haze days in Beijing, China, Environmental Pollution, 290, 118032,
- 479 https://doi.org/10.1016/j.envpol.2021.118032, 2021.
- 480 Huang, L., Zhu, Y., Zhai, H., Xue, S., Zhu, T., Shao, Y., Liu, Z., Emery, C., Yarwood,
- 481 G., Wang, Y., Fu, J., Zhang, K., and Li, L.: Recommendations on benchmarks for
- and chemical are quality model applications in China Part 1: PM_{2.5} and chemical
- species, Atmos. Chem. Phys., 21, 2725–2743, https://doi.org/10.5194/acp-21-
- 484 2725-2021, 2021.
- 485 Huang, R.-J., Zhang, Y., Bozzetti, C., Ho, K.-F., Cao, J.-J., Han, Y., Daellenbach, K. R.,
- 486 Slowik, J. G., Platt, S. M., Canonaco, F., Zotter, P., Wolf, R., Pieber, S. M., Bruns,
- 487 E. A., Crippa, M., Ciarelli, G., Piazzalunga, A., Schwikowski, M., Abbaszade, G.,
- 488 Schnelle-Kreis, J., Zimmermann, R., An, Z., Szidat, S., Baltensperger, U., Haddad,
- 489 I. E., and Prévôt, A. S. H.: High secondary aerosol contribution to particulate
- 490 pollution during haze events in China, Nature, 514, 218-222,
- 491 https://doi.org/10.1038/nature13774, 2014.
- 492 Huang, X., Song, Y., Li, M., Li, J., Huo, Q., Cai, X., Zhu, T., Hu, M., and Zhang, H.: A
- 493 high-resolution ammonia emission inventory in China, Global Biogeochemical
- 494 Cycles, 26, n/a-n/a, https://doi.org/10.1029/2011gb004161, 2012.
- 495 Kang, Y., Liu, M., Song, Y., Huang, X., Yao, H., Cai, X., Zhang, H., Kang, L., Liu, X.,
- 496 Yan, X., He, H., Zhang, Q., Shao, M., and Zhu, T.: High-resolution ammonia
- 497 emissions inventories in China from 1980 to 2012, Atmospheric Chemistry and
- 498 Physics, 16, 2043–2058, https://doi.org/10.5194/acp-16-2043-2016, 2016.

- 499 Kong, L., Tang, X., Zhu, J., Wang, Z., Pan, Y., Wu, H., Wu, L., Wu, Q., He, Y., Tian, S.,
- Xie, Y., Liu, Z., Sui, W., Han, L., and Carmichael, G.: Improved Inversion of
- Monthly Ammonia Emissions in China Based on the Chinese Ammonia
- 502 Monitoring Network and Ensemble Kalman Filter, Environ Sci Technol, 53,
- 503 12529–12538, https://doi.org/10.1021/acs.est.9b02701, 2019.
- 504 Lei, R., Nie, D., Zhang, S., Yu, W., Ge, X., and Song, N.: Spatial and temporal
- 505 characteristics of air pollutants and their health effects in China during 2019–2020,
- 506 Journal of Environmental Management, 317, 115460,
- 507 https://doi.org/10.1016/j.jenvman.2022.115460, 2022.
- 508 Lei, Y., Yin, Z., Lu, X., Zhang, Q., Gong, J., Cai, B., Cai, C., Chai, Q., Chen, H., Chen,
- 509 R., Chen, S., Chen, W., Cheng, J., Chi, X., Dai, H., Feng, X., Geng, G., Hu, J., Hu,
- 510 S., Huang, C., Li, T., Li, W., Li, X., Liu, J., Liu, X., Liu, Z., Ma, J., Qin, Y., Tong,
- 511 D., Wang, X., Wang, X., Wu, R., Xiao, Q., Xie, Y., Xu, X., Xue, T., Yu, H., Zhang,
- 512 D., Zhang, N., Zhang, S., Zhang, X., Zhang, X., Zhang, X., Zheng, B.,
- 513 Zheng, Y., Zhou, J., Zhu, T., Wang, J., and He, K.: The 2022 report of synergetic
- roadmap on carbon neutrality and clean air for China: Accelerating transition in
- key sectors, Environmental Science and Ecotechnology, 19, 100335,
- 516 https://doi.org/10.1016/j.ese.2023.100335, 2024.
- 517 Li, B., Chen, L., Shen, W., Jin, J., Wang, T., Wang, P., Yang, Y., and Liao, H.: Improved
- 518 gridded ammonia emission inventory in China, Atmospheric Chemistry and
- 519 Physics, 21, 15883–15900, https://doi.org/10.5194/acp-21-15883-2021, 2021.
- 520 Li, B., Liao, H., Li, K., Wang, Y., Zhang, L., Guo, Y., Liu, L., Li, J., Jin, J., Yang, Y.,
- Gong, C., Wang, T., Shen, W., Wang, P., Dang, R., Liao, K., Zhu, Q., and Jacob,
- 522 D. J.: Unlocking nitrogen management potential via large-scale farming for air
- 523 quality and substantial co-benefits, National Science Review, 11, nwae324,
- 524 https://doi.org/10.1093/nsr/nwae324, 2024.
- 525 Li, M., Liu, H., Geng, G., Hong, C., Liu, F., Song, Y., Tong, D., Zheng, B., Cui, H.,
- Man, H., Zhang, Q., and He, K.: Anthropogenic emission inventories in China: a
- review, National Science Review, 4, 834–866, https://doi.org/10.1093/nsr/nwx150,
- 528 2017.
- 529 Li, N., Zhang, H., Zhu, S., Liao, H., Hu, J., Tang, K., Feng, W., Zhang, R., Shi, C., Xu,
- H., Chen, L., and Li, J.: Secondary PM2.5 dominates aerosol pollution in the
- Yangtze River Delta region: Environmental and health effects of the Clean air Plan,
- 532 Environment International, 171, 107725,
- 533 https://doi.org/10.1016/j.envint.2022.107725, 2023a.
- 534 Li, R., Gao, Y., Xu, J., Cui, L., and Wang, G.: Impact of Clean Air Policy on Criteria
- Air Pollutants and Health Risks Across China During 2013-2021, JGR
- 536 Atmospheres, 128, e2023JD038939, https://doi.org/10.1029/2023JD038939,
- 537 2023b.

- 538 Liu, H., Lei, J., Liu, Y., Zhu, T., Chan, K., Chen, X., Wei, J., Deng, F., Li, G., Jiang, Y.,
- 539 Bai, L., Wang, K., Chen, J., Lan, Y., Xia, X., Wang, J., Wei, C., Li, Y., Chen, R.,
- Gong, J., Duan, X., Zhang, K., Kan, H., Shi, X., Guo, X., and Wu, S.: Hospital
- admissions attributable to reduced air pollution due to clean-air policies in China,
- Nat Med, https://doi.org/10.1038/s41591-025-03515-y, 2025.
- 543 Liu, M., Huang, X., Song, Y., Tang, J., Cao, J., Zhang, X., Zhang, Q., Wang, S., Xu, T.,
- 544 Kang, L., Cai, X., Zhang, H., Yang, F., Wang, H., Yu, J. Z., Lau, A. K. H., He, L.,
- Huang, X., Duan, L., Ding, A., Xue, L., Gao, J., Liu, B., and Zhu, T.: Ammonia
- emission control in China would mitigate haze pollution and nitrogen deposition,
- but worsen acid rain, Proc Natl Acad Sci U S A, 116, 7760-7765,
- 548 https://doi.org/10.1073/pnas.1814880116, 2019.
- 549 Liu, P., Ding, J., Liu, L., Xu, W., and Liu, X.: Estimation of surface ammonia
- 550 concentrations and emissions in China from the polar-orbiting Infrared
- 551 Atmospheric Sounding Interferometer and the FY-4A Geostationary
- Interferometric Infrared Sounder, Atmos. Chem. Phys., 22, 9099–9110,
- 553 https://doi.org/10.5194/acp-22-9099-2022, 2022a.
- 554 Liu, R., Liu, T., Huang, X., Ren, C., Wang, L., Niu, G., Yu, C., Zhang, Y., Wang, J., Qi,
- 555 X., Nie, W., Chi, X., and Ding, A.: Characteristics and sources of atmospheric
- ammonia at the SORPES station in the western Yangtze river delta of China,
- 557 Atmospheric Environment, 318, 120234,
- 558 https://doi.org/10.1016/j.atmosenv.2023.120234, 2024.
- 559 Liu, S., Geng, G., Xiao, Q., Zheng, Y., Liu, X., Cheng, J., and Zhang, Q.: Tracking
- Daily Concentrations of PM2.5 Chemical Composition in China since 2000,
- 561 Environ. Sci. Technol., 56, 16517–16527, https://doi.org/10.1021/acs.est.2c06510,
- 562 2022b.
- 563 Liu, Z., Zhou, M., Chen, Y., Chen, D., Pan, Y., Song, T., Ji, D., Chen, Q., and Zhang,
- L.: The nonlinear response of fine particulate matter pollution to ammonia
- 565 emission reductions in North China, Environmental Research Letters,
- 566 https://doi.org/10.1088/1748-9326/abdf86, 2021.
- 567 Liu, Z., Rieder, H. E., Schmidt, C., Mayer, M., Guo, Y., Winiwarter, W., and Zhang, L.:
- 568 Optimal reactive nitrogen control pathways identified for cost-effective PM2.5
- mitigation in Europe, Nat Commun, 14, 4246, https://doi.org/10.1038/s41467-
- 570 023-39900-9, 2023.
- 571 Lu, L., Yuan, L., Cai, Z., Fu, J., and Wu, G.: Emission inventory and distribution
- 572 characteristics of NH3 from agricultural fertilizers in Hunan, China, from 2012 to
- 573 2021, Atmospheric Pollution Research, 16, 102479,
- 574 https://doi.org/10.1016/j.apr.2025.102479, 2025.
- 575 Ma, S.: High-resolution assessment of ammonia emissions in China: Inventories,

- driving forces and mitigation, Atmospheric Environment, 229, 117458,
- 577 https://doi.org/10.1016/j.atmosenv.2020.117458, 2020.
- 578 Pan, D., Mauzerall, D. L., Wang, R., Guo, X., Puchalski, M., Guo, Y., Song, S., Tong,
- 579 D., Sullivan, A. P., Schichtel, B. A., Collett, J. L., and Zondlo, M. A.: Regime shift
- in secondary inorganic aerosol formation and nitrogen deposition in the rural
- 581 United States, Nat. Geosci., 17, 617–623, https://doi.org/10.1038/s41561-024-
- 582 01455-9, 2024.
- Pan, Y., Tian, S., Liu, D., Fang, Y., Zhu, X., Zhang, Q., Zheng, B., Michalski, G., and
- Wang, Y.: Fossil Fuel Combustion-Related Emissions Dominate Atmospheric
- Ammonia Sources during Severe Haze Episodes: Evidence from (15)N-Stable
- Isotope in Size-Resolved Aerosol Ammonium, Environ Sci Technol, 50, 8049–56,
- 587 https://doi.org/10.1021/acs.est.6b00634, 2016.
- 588 Pan, Y., Tian, S., Zhao, Y., Zhang, L., Zhu, X., Gao, J., Huang, W., Zhou, Y., Song, Y.,
- 589 Zhang, Q., and Wang, Y.: Identifying Ammonia Hotspots in China Using a
- National Observation Network, Environ Sci Technol, 52, 3926–3934,
- 591 https://doi.org/10.1021/acs.est.7b05235, 2018a.
- 592 Pan, Y., Tian, S., Liu, D., Fang, Y., Zhu, X., Gao, M., Gao, J., Michalski, G., and Wang,
- 593 Y.: Isotopic evidence for enhanced fossil fuel sources of aerosol ammonium in the
- urban atmosphere, Environ Pollut, 238, 942–947,
- 595 https://doi.org/10.1016/j.envpol.2018.03.038, 2018b.
- 596 Paulot, F., Jacob, D. J., Pinder, R. W., Bash, J. O., Travis, K., and Henze, D. K.:
- Ammonia emissions in the United States, European Union, and China derived by
- high-resolution inversion of ammonium wet deposition data: Interpretation with a
- new agricultural emissions inventory (MASAGE NH3), Journal of Geophysical
- 600 Research: Atmospheres, 119, 4343–4364, https://doi.org/10.1002/2013jd021130,
- 601 2014.
- 602 Pendergrass, D. C., Jacob, D. J., Oak, Y. J., Lee, J., Kim, M., Kim, J., Lee, S., Zhai, S.,
- Irie, H., and Liao, H.: A continuous 2011–2022 record of fine particulate matter
- 604 (PM2.5) in East Asia at daily 2-km resolution from geostationary satellite
- observations: Population exposure and long-term trends, Atmospheric
- 606 Environment, 346, 121068, https://doi.org/10.1016/j.atmosenv.2025.121068,
- 607 2025.
- 608 Peng, Z., Wang, H., Zhang, M., Zhang, Y., Li, L., Li, Y., and Ao, Z.: Analysis of aerosol
- chemical components and source apportionment during a long-lasting haze event
- in the Yangtze River Delta, China, Journal of Environmental Sciences, 156, 14–
- 611 29, https://doi.org/10.1016/j.jes.2024.06.023, 2025.
- 612 Pu, W., Ma, Z., Collett, J. L., Guo, H., Lin, W., Cheng, Y., Quan, W., Li, Y., Dong, F.,
- and He, D.: Regional transport and urban emissions are important ammonia

- 614 contributors in Beijing, China, Environ Pollut, 265, 115062,
- https://doi.org/10.1016/j.envpol.2020.115062, 2020.
- 616 Ren, C., Huang, X., Liu, T., Song, Y., Wen, Z., Liu, X., Ding, A., and Zhu, T.: A dynamic
- ammonia emission model and the online coupling with WRF-Chem (WRF-
- 618 SoilN–Chem v1.0): development and regional evaluation in China, Geoscientific
- Model Development, 16, 1641–1659, https://doi.org/10.5194/gmd-16-1641-2023,
- 620 2023.
- 621 Ren, C., Huang, X., Wang, Y., Zhang, L., Zhou, X., Sun, W., Zhang, H., Liu, T., Ding,
- 622 A., and Wang, T.: Enhanced Soil Emissions of Reactive Nitrogen Gases by
- 623 Fertilization and Their Impacts on Secondary Air Pollution in Eastern China,
- 624 Environ. Sci. Technol., 59, 5119–5130, https://doi.org/10.1021/acs.est.4c12324,
- 625 2025.
- 626 Song, L., Walters, W. W., Pan, Y., Li, Z., Gu, M., Duan, Y., Lü, X., and Fang, Y.: 15N
- 627 natural abundance of vehicular exhaust ammonia, quantified by active sampling
- 628 techniques, Atmospheric Environment, 255, 118430,
- 629 https://doi.org/10.1016/j.atmosenv.2021.118430, 2021.
- 630 Song, Q., Huang, L., Zhang, Y., Li, Z., Wang, S., Zhao, B., Yin, D., Ma, M., Li, S., Liu,
- B., Zhu, L., Chang, X., Gao, D., Jiang, Y., Dong, Z., Shi, H., and Hao, J.: Driving
- Factors of PM_{2.5} Pollution Rebound in North China Plain in Early 2023, Environ.
- 633 Sci. Technol. Lett., 12, 305–312, https://doi.org/10.1021/acs.estlett.4c01153, 2025.
- 634 Sun, K., Tao, L., Miller, D. J., Pan, D., Golston, L. M., Zondlo, M. A., Griffin, R. J.,
- Wallace, H. W., Leong, Y. J., Yang, M. M., Zhang, Y., Mauzerall, D. L., and Zhu,
- T.: Vehicle Emissions as an Important Urban Ammonia Source in the United States
- 637 and China, Environ Sci Technol, 51, 2472–2481,
- 638 https://doi.org/10.1021/acs.est.6b02805, 2017.
- 639 Ti, C., Han, X., Chang, S. X., Peng, L., Xia, L., and Yan, X.: Mitigation of agricultural
- NH3 emissions reduces PM2.5 pollution in China: A finer scale analysis, Journal
- 641 of Cleaner Production, 350, 131507,
- https://doi.org/10.1016/j.jclepro.2022.131507, 2022.
- Van Damme, M., Whitburn, S., Clarisse, L., Clerbaux, C., Hurtmans, D., and Coheur,
- P.-F.: Version 2 of the IASI NH<sub>3</sub> neural network retrieval
- algorithm: near-real-time and reanalysed datasets, Atmospheric Measurement
- Techniques, 10, 4905–4914, https://doi.org/10.5194/amt-10-4905-2017, 2017.
- Van Damme, M., Clarisse, L., Whitburn, S., Hadji-Lazaro, J., Hurtmans, D., Clerbaux,
- 648 C., and Coheur, P. F.: Industrial and agricultural ammonia point sources exposed,
- Nature, 564, 99–103, https://doi.org/10.1038/s41586-018-0747-1, 2018.
- Wang, G., Zhang, R., Gomez, M. E., Yang, L., Levy Zamora, M., Hu, M., Lin, Y., Peng,

- 651 J., Guo, S., Meng, J., Li, J., Cheng, C., Hu, T., Ren, Y., Wang, Y., Gao, J., Cao, J.,
- An, Z., Zhou, W., Li, G., Wang, J., Tian, P., Marrero-Ortiz, W., Secrest, J., Du, Z.,
- Zheng, J., Shang, D., Zeng, L., Shao, M., Wang, W., Huang, Y., Wang, Y., Zhu, Y.,
- Li, Y., Hu, J., Pan, B., Cai, L., Cheng, Y., Ji, Y., Zhang, F., Rosenfeld, D., Liss, P.
- S., Duce, R. A., Kolb, C. E., and Molina, M. J.: Persistent sulfate formation from
- London Fog to Chinese haze, Proc Natl Acad Sci U S A, 113, 13630–13635,
- 657 https://doi.org/10.1073/pnas.1616540113, 2016.
- 658 Wang, J., Zhao, B., Wang, S., Yang, F., Xing, J., Morawska, L., Ding, A., Kulmala, M.,
- Kerminen, V.-M., Kujansuu, J., Wang, Z., Ding, D., Zhang, X., Wang, H., Tian,
- M., Petäjä, T., Jiang, J., and Hao, J.: Particulate matter pollution over China and
- the effects of control policies, Science of The Total Environment, 584–585, 426–
- 447, https://doi.org/10.1016/j.scitotenv.2017.01.027, 2017.
- 663 Wei, J., Li, Z., Chen, X., Li, C., Sun, Y., Wang, J., Lyapustin, A., Brasseur, G. P., Jiang,
- 664 M., Sun, L., Wang, T., Jung, C. H., Qiu, B., Fang, C., Liu, X., Hao, J., Wang, Y.,
- Zhan, M., Song, X., and Liu, Y.: Separating Daily 1 km PM2.5 Inorganic Chemical
- 666 Composition in China since 2000 via Deep Learning Integrating Ground, Satellite,
- and Model Data, Environ. Sci. Technol., 57, 18282–18295,
- https://doi.org/10.1021/acs.est.3c00272, 2023.
- 669 Wu, C., Wang, G., Li, J., Li, J., Cao, C., Ge, S., Xie, Y., Chen, J., Liu, S., Du, W., Zhao,
- Z., and Cao, F.: Non-agricultural sources dominate the atmospheric NH3 in Xi'an,
- a megacity in the semi-arid region of China, Sci Total Environ, 722, 137756,
- https://doi.org/10.1016/j.scitotenv.2020.137756, 2020.
- Kiao, Q., Geng, G., Xue, T., Liu, S., Cai, C., He, K., and Zhang, Q.: Tracking PM_{2.5} and
- O₃ Pollution and the Related Health Burden in China 2013–2020, Environ. Sci.
- 675 Technol., 56, 6922–6932, https://doi.org/10.1021/acs.est.1c04548, 2022.
- 676 Xu, W., Zhao, Y., Wen, Z., Chang, Y., Pan, Y., Sun, Y., Ma, X., Sha, Z., Li, Z., Kang, J.,
- Liu, L., Tang, A., Wang, K., Zhang, Y., Guo, Y., Zhang, L., Sheng, L., Zhang, X.,
- Gu, B., Song, Y., Van Damme, M., Clarisse, L., Coheur, P.-F., Collett, J. L.,
- Goulding, K., Zhang, F., He, K., and Liu, X.: Increasing importance of ammonia
- emission abatement in PM2.5 pollution control, Science Bulletin, 67, 1745–1749,
- 681 https://doi.org/10.1016/j.scib.2022.07.021, 2022.
- 682 Yang, G., Ren, G., Zhang, P., Xue, X., Tysa, S. K., Jia, W., Qin, Y., Zheng, X., and
- Zhang, S.: PM_{2.5} Influence on Urban Heat Island (UHI) Effect in Beijing and the
- Possible Mechanisms, JGR Atmospheres, 126, e2021JD035227,
- 685 https://doi.org/10.1029/2021JD035227, 2021.
- 4686 Yang, Z., Wang, Y., Xu, X.-H., Yang, J., and Ou, C.-Q.: Quantifying and characterizing
- the impacts of PM2.5 and humidity on atmospheric visibility in 182 Chinese cities:
- A nationwide time-series study, Journal of Cleaner Production, 368, 133182,
- https://doi.org/10.1016/j.jclepro.2022.133182, 2022.

- 690 Zhang, H., Zhou, X., Ren, C., Li, M., Liu, T., and Huang, X.: A systematic review of
- reactive nitrogen simulations with chemical transport models in China,
- 692 Atmospheric Research, 309, 107586,
- 693 https://doi.org/10.1016/j.atmosres.2024.107586, 2024.
- Zhang, L., Chen, Y., Zhao, Y., Henze, D. K., Zhu, L., Song, Y., Paulot, F., Liu, X., Pan,
- Y., Lin, Y., and Huang, B.: Agricultural ammonia emissions in China: reconciling
- bottom-up and top-down estimates, Atmospheric Chemistry and Physics, 18, 339–
- 697 355, https://doi.org/10.5194/acp-18-339-2018, 2018.
- Zhang, Q., Zheng, Y., Tong, D., Shao, M., Wang, S., Zhang, Y., Xu, X., Wang, J., He,
- H., Liu, W., Ding, Y., Lei, Y., Li, J., Wang, Z., Zhang, X., Wang, Y., Cheng, J., Liu,
- 700 Y., Shi, Q., Yan, L., Geng, G., Hong, C., Li, M., Liu, F., Zheng, B., Cao, J., Ding,
- 701 A., Gao, J., Fu, Q., Huo, J., Liu, B., Liu, Z., Yang, F., He, K., and Hao, J.: Drivers
- of improved PM2.5 air quality in China from 2013 to 2017, Proc Natl Acad Sci U
- 703 S A, 116, 24463–24469, https://doi.org/10.1073/pnas.1907956116, 2019.
- 704 Zhang, X., Wu, Y., Liu, X., Reis, S., Jin, J., Dragosits, U., Van Damme, M., Clarisse,
- 705 L., Whitburn, S., Coheur, P. F., and Gu, B.: Ammonia Emissions May Be
- Substantially Underestimated in China, Environ Sci Technol, 51, 12089–12096,
- 707 https://doi.org/10.1021/acs.est.7b02171, 2017.
- Zhang, Z., Yan, Y., Kong, S., Deng, Q., Qin, S., Yao, L., Zhao, T., and Qi, S.: Benefits
- of refined NH3 emission controls on PM2.5 mitigation in Central China, Sci Total
- 710 Environ, 814, 151957, https://doi.org/10.1016/j.scitotenv.2021.151957, 2022.
- 711 Zhao, Y., Yuan, M., Huang, X., Chen, F., and Zhang, J.: Quantification and evaluation
- of atmospheric ammonia emissions with different methods: a case study for the
- 713 Yangtze River Delta region, China, Atmospheric Chemistry and Physics, 20,
- 714 4275–4294, https://doi.org/10.5194/acp-20-4275-2020, 2020.
- 715 Zheng, B., Zhang, Q., Zhang, Y., He, K. B., Wang, K., Zheng, G. J., Duan, F. K., Ma,
- 716 Y. L., and Kimoto, T.: Heterogeneous chemistry: a mechanism missing in current
- 717 models to explain secondary inorganic aerosol formation during the January 2013
- haze episode in North China, Atmospheric Chemistry and Physics, 15, 2031–2049,
- 719 https://doi.org/10.5194/acp-15-2031-2015, 2015.
- 720 Zheng, B., Tong, D., Li, M., Liu, F., Hong, C., Geng, G., Li, H., Li, X., Peng, L., Qi, J.,
- Yan, L., Zhang, Y., Zhao, H., Zheng, Y., He, K., and Zhang, Q.: Trends in China's
- 722 anthropogenic emissions since 2010 as the consequence of clean air actions,
- 723 Atmospheric Chemistry and Physics, 18, 14095–14111,
- 724 https://doi.org/10.5194/acp-18-14095-2018, 2018.
- 725 Zhou, M., Jiang, W., Gao, W., Gao, X., Ma, M., and Ma, X.: Anthropogenic emission
- 726 inventory of multiple air pollutants and their spatiotemporal variations in 2017 for
- the Shandong Province, China, Environ Pollut, 288, 117666,

https://doi.org/10.5194/egusphere-2025-1407 Preprint. Discussion started: 15 May 2025 © Author(s) 2025. CC BY 4.0 License.

https://doi.org/10.1016/j.envpol.2021.117666, 2021. 728 Zhou, M., Nie, W., Qiao, L., Huang, D. D., Zhu, S., Lou, S., Wang, H., Wang, Q., Tao, 729 730 S., Sun, P., Liu, Y., Xu, Z., An, J., Yan, R., Su, H., Huang, C., Ding, A., and Chen, 731 C.: Elevated Formation of Particulate Nitrate From N2 O5 Hydrolysis in the Yangtze River Delta Region From 2011 to 2019, Geophysical Research Letters, 732 49, e2021GL097393, https://doi.org/10.1029/2021GL097393, 2022. 733 Zhu, Q., Deng, Y.-L., Liu, Y., and Steenland, K.: Associations between Ultrafine 734 735 Particles and Incident Dementia in Older Adults, Environ. Sci. Technol., acs.est.4c10574, https://doi.org/10.1021/acs.est.4c10574, 2025. 736

737

Table 1. NH₃ emission estimates in recent studies

Region	Sector	Emission	Period	Method	Referenc
China	/	12.4 Tg yr ⁻¹	2016	Bottom-up	Ma (2020
		12.1 Tg yr ⁻¹	2016	Bottom-up	Li et al. (2021)
		11.9~12.0 Tg yr ⁻¹	2005~2015	Bottom-up	Chen et a (2021)
		11.7 Tg yr ⁻¹	2008	Top-down	Zhang et a (2018)
		8.4 Tg N yr ⁻¹	2005-2008	Top-down	Paulot et a (2014)
		0.74 Tg mon ⁻¹	2008 Apr	Top-down	Xu et al (2013)
		13.0 Tg yr ⁻¹	2016	Top-down	Kong et a (2019)
		18.9 Tg yr ⁻¹	2015	Top-down	Zhang et a (2017)
Eastern China	Industry	274.5 Gg yr ⁻¹	2016	Bottom-up	Chen et a (2022)
	/	966.1 Gg yr ⁻¹	2016	Bottom-up	(Guo et a 2020)
	/	28.8 Gg mon ⁻¹	2015 Jan		Huang et a
		82.5 Gg mon ⁻¹	2015 Apr	•	
ВТН		102.9 Gg mon ⁻¹	2015 Jul	Top-down	
		50.2 Gg mon ⁻¹	2015 Oct		
	Agriculture	505.85 Gg yr ⁻	2016	T. 1	This study
	Non- Agriculture	282.53 Gg yr ⁻	2016	Top-down	
	Agriculture	848.8 Gg yr ⁻¹		Bottom-up	Yu et al. (2020)
YRD	Non-	137.2 Gg yr ⁻¹	2014		

https://doi.org/10.5194/egusphere-2025-1407 Preprint. Discussion started: 15 May 2025 © Author(s) 2025. CC BY 4.0 License.

	Agriculture				
	Agriculture	77 Gg mon ⁻¹	2014 Jan		
		133 Gg mon ⁻¹	2014 Apr	Zhao et al.	
		169 Gg mon ⁻¹	2014 Jul	Bottom-up	(2020) Huang et al. (2021)
		108 Gg mon ⁻¹	2014 Oct	=	
		24.42 Gg mon ⁻¹	2015 Jan		
		88.0 Gg mon ⁻¹	2015 Apr		
		111.7 Gg mon ⁻¹	2015 Jul	Top-down	
		51.0 Gg mon ⁻¹	2015 Oct		
	Agriculture	1280.41 Gg			
	Non- Agriculture	297.86 Gg	2016	Top-down	this study
Henan	/	1035Gg yr ⁻¹	2013	Top-down	Wang et al. (2018)
		982 Gg yr ⁻¹	2016	Bottom-up	Bai et al. (2020)
	Agriculture	647.73 Gg yr ⁻	2016	Top-down	this study
	Non-	206.20 Gg yr	2016		
	Agriculture	1			
Shandong	/	1210 Gg yr ⁻¹	2017	Bottom-up	Zhou et al. (2021)
	Agriculture	715.29 Gg yr ⁻	•		this study
	Non- Agriculture	296.98 Gg yr ⁻	2016	Top-down	

Table 2 List of sensitivity tests for optimized iterative algorithm.

Case name	AGR emission	Non-AGR emission	Emission outside the domain
A _{total}	4	4	4
$A_{ m agr}$	4	×	×
$A_{non\text{-}agr}$	×	√	×
$A_{transport}$	×	×	4
A_{blank}	×	×	×

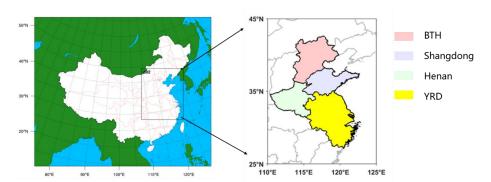


Table 3 Simulated and observed air pollutant concentrations

	Prior simulation	Posterior simulation	Observation
PM _{2.5} (μg m ⁻³)	65.7	67.3	67.1
NO ₂ (ppb)	22.3	22.1	23.0
SO ₂ (ppb)	8.2	6.8	6.5

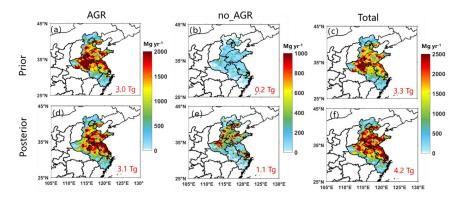


Figure 1. Simulation domains of the WRF-Chem model used in this study (left). Right panel illustrates the four research regions in Eastern China. Names and locations are labeled with different colors in this panel.

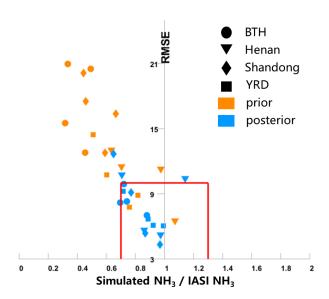


Figure 2. Prior and posterior NH₃ emissions from agricultural and non-agricultural sectors in the study region. The red numbers show the total emissions.

Figure 3. Scatter plots of the prior and posterior NH₃ total column data versus IASI retrievals. Each point represents prior (or posterior) data for a specific season and a specific region. Circles, triangles, rhombuses, and rectangles correspond to the BTH, Henan, Shandong, and YRD regions, respectively. Orange and blue markers represent a prior and a posterior data, respectively.

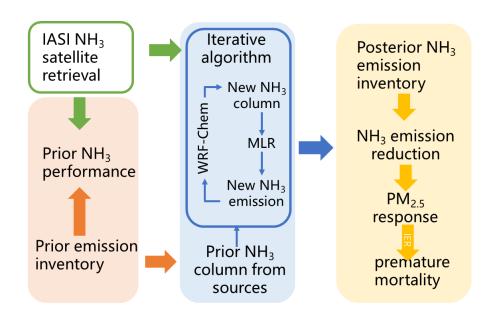
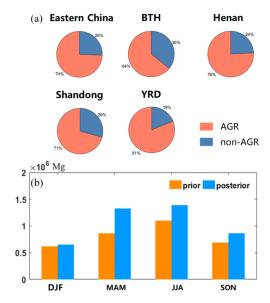



Figure 4. Visualization of the workflow in this study.

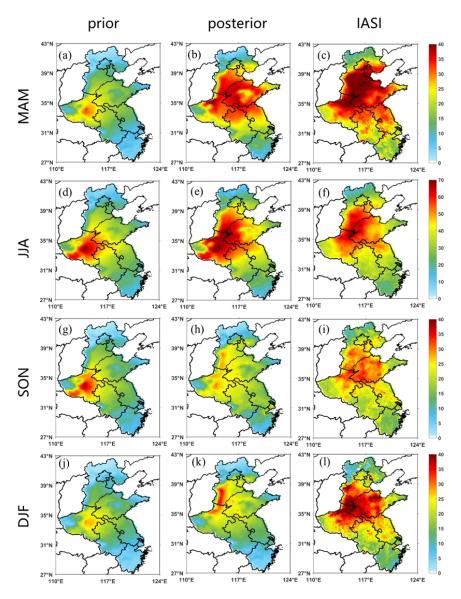


Figure 5. Posterior emission characteristics. (a) Contribution from regional emission sectors. (b) Comparison of the posteriori and prior emissions (unit: Mg) in study region.

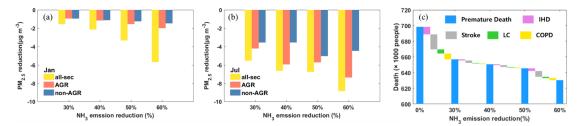


Figure 6. Distributions of NH₃ total column from prior simulation, posterior simulation and satellite retrieval in different seasons.

Figure 7. Response of NH₃ emission reduction in 30-60% in (a)-(b) concentration of PM_{2.5} and (c) premature death caused by different diseases. The IHD, Stroke, LC and COPD represent the premature death caused by ischemic heart disease, stroke, lung cancer, chronic obstructive pulmonary disease.